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Abstract—The demands of high-speed and power-efficient
systems have resulted into the emergence of the approximate
computing. Existing approximate circuits as well as stochas-
tic techniques have shown promising advances in improving
various figures of merit. However, a through fair comparison
of arithmetic units still remains an issue which has not
been studied. This paper reviews the prerequisites for a fair
comparison of approximate arithmetic units. As one of the key
components of arithmetic circuits, adders are the focus of this
paper. For the first time in this paper, approximate and exact
adders are studied together in the stochastic regime. Simulation
results show that both the equal segmentation adder (ESA) and
the error tolerant adder type II (ETAII) outperform exact adders
working stochastically, if and only if the right configuration
and sub-adder architectures are chosen. Otherwise, there is
no reason to use the aforementioned architectures. In all,
considering the cost-error trade-off, Lower-part OR adder (LOA)
has the best behavior in the stochastic regime.

I. INTRODUCTION

Increasing vulnerability of computing systems to errors
in underlying circuits is a growing concern nowadays. Vari-
ations in process, temperature, and power supply continue
to strongly influence delay, and due to leakage dominance,
their impact on power is increasing dramatically. Approx-
imate computing has become a promising technique to
reduce power, area and delay constraints in VLSI design.
There are two methodologies for approximation: The first
is the so-called stochastic computing [1], which proposes a
new vision for energy and performance efficiency in which
some errors are allowed, as long as they are corrected or
tolerated by hardware, software, or the end user. Over-
scaling technique is one of the most popular and widely
used stochastic techniques. The second methodology ap-
proximates a system by redesigning a logic circuit. Although
each of the methodologies has its own benefits and target
applications, they provide a trade-off between error and ef-
ficiency. Hence, both techniques should be studied together,
which has not been done before.

Adders, as one of the key components of arithmetic
circuits, have attracted lots of researchers’ attention in the
field of approximate computing. Approximate adders have
been proposed by truncating the carry propagation chain
resulting in speculative adders. In the literature, there is lack
of any study comparing approximate and stochastic adders.
In other words, approximate and stochastic adders have not

been studied together. Owing to this fact, looking at the
existing research works, it is not clear if an exact adder
working stochastically performs better than approximate
adders or not.

A thorough comparison of approximate adders is an-
other missing part of the research area of approximate
computing. Indeed, in [2]–[4], different approximate adders
have been compared for their circuit characteristics and
error values. However, each paper has its own deficiencies.
In [2], which is the most complete existing comparison of
approximate adders, the authors compared various approx-
imate adders with different configurations. Nonetheless,
the delay and power reports do not make sense in some
cases. The most notable difference of our paper with the
aforementioned paper is to include stochastic behavior,
and considering different internal architectures. Authors
in [3] evaluated different approximate adders to use in
neuromorphic applications. In this paper, the error values
have been reported without considering the Carry-out bit
in the reference architecture. In [4], approximate adders
operating as a recoding adder have been compared. Since
the approximate adders have been simulated for a specific
function, the simulation results cannot be compared with
other research studies. As we discuss with more details later,
the lack of fair and reproducible comparison of adders is
slowing down the research in this field.

The paper is organized as follows: In Section II, the ex-
isting approximate adders are reviewed. Section III presents
the necessary factors affecting the comparison of arithmetic
units. In Section IV, the mentioned factors are evaluated
using experimental results. A final comparison of the adders
are also made considering accuracy versus cost of the
adders. And finally, in Section V, the paper is concluded.

II. BACKGROUND

Various topologies of parallel-prefix adders and their
characteristics can be found in [5]. It is obvious that
each of these architectures results in different trade-off of
approximate adders when placed as their sub-adders. Using
experimental results, it will be shown later in this paper that
not only the topology of an approximate adder is important,
but also the architecture used inside an approximate adder



plays a decisive role in its performance and error-cost trade-
off.

Among the existing approximate adders [6]–[12], in this
paper, we are comparing the combinational ones with
better performance. More information can be found in [2].
In the rest of this section, approximate adders used for the
comparison are introduced.

A. The Equal Segmentation Adder (ESA)

A segmented adder divides an n-bit adder into a number
of smaller sub-adders which operate in parallel with fixed
carry inputs. Let k= {k1,k2, . . . ,ks } denote a vector including
size of sub-adders, where s is the number of sub-adders.
In Figure 1, a segmented adder divided into s sub-adders
is shown, where k1 is the size of the first (the lowest
significant) sub-adder, k2 is the size of the second sub-
adder, and so on.

The equal segmentation adder (ESA) is a type of seg-
mented adders with equally sized sub-adders, i.e. k1 = k2 =
·· · = ks . Conventionally, ESA is considered as an n-bit adder
divided into n−l

k equally sized sub-adders in addition to the
lowest significant sub-adder with the size l . Accordingly, the
delay and the area of an ESA is dependent to the structure
of the sub-adders.

The performance of an ESA is dependent on sub-adders’
architecture(s). Although an ESA implemented using serial
prefix algorithm is smaller and has less complexity than
other algorithms, it has a relatively large delay. Based on
the definitions presented in [5], the performance of approxi-
mate adders implemented using different prefix algorithms
can be derived, which is out of the scope of this paper.
Moreover, an ESA shows different behavior in the stochastic
regime depending on the architectures used as its sub-
adders. This is proved later in this paper, using experimental
results.

B. The Error Tolerant Adder Type II (ETAII)

ETAII, proposed in [11], is an approximate adder based
on segmented adders. It splits the entire carry propagation
path into a number of short paths and completes the
carry propagations in these short paths concurrently. Here,
like the previous subsection, we first consider the general
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case of the ETAII with arbitrary block sizes. As depicted in
figure 2, the architecture of ETAII is divided into smaller
blocks. Each block has an arbitrary number of bits and,
different from ESA, consists of two separate circuitries -
Carry Generator and Sum Generator. As the name implies,
the Carry Generator creates the Carry-out signal. It does
not take the carry signal from the previous block. The Sum
Generator, however, takes the Carry-in signal from the pre-
vious block to generate its sum output bits. Consequently,
the carry propagation only exists between two neighboring
blocks instead of lying along the entire adder structure
[11]. Conventionally, ETAII is divided into n−l

k equally sized
blocks, in addition to the lowest significant block with the
size l .

C. The Lower-part OR Adder

The Lower-part OR Adder (LOA) [12] divides an n-bit
adder into two sub-adders. While the higher significant sub-
adder is an (n −nor )-bit exact adder, the lower part sub-
adder is simply constructed by nor number of OR gates. To
generate the Carry-in signal for the higher significant exact
sub-adder, an extra AND gate is used which ANDs the most
significant input bits of the lower significant sub-adder.
The critical path delay of LOA then depends on the size
of the exact sub-adder. The other figures of merit are also
dependent on the exact sub-adder architecture. Figure 3
shows the topology of a LOA. As can be seen, an n-bit
LOA exploits a regular smaller precise adder that computes
the precise values of the (n −nor ) most significant bits of
the result along with OR gates that approximate the nor

least significant result bits by applying bitwise OR to the
respective input bits.
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Fig. 3. The hardware structure of LOA



III. RULES FOR FAIR COMPARISON

Choosing the best architecture is always made by con-
sidering the requirements for the specific application. In
order to compare arithmetic units, all the factors affecting
the result of the comparison should be clearly defined and
specified. However, in the literature the definition has not
been done properly. Due to the lack of unique and clear
definitions, comparing different papers’ results is almost
impossible. In this section, the rules for a fair comparison
are listed and the importance of proper specification of
each factor is discussed.

A. Reference Architecture

The first important factor impacting the comparison of
arithmetic units is the specification of the executable refer-
ence architecture. This obvious observation has frequently
been violated in the literature. Since the focus of this paper
is on adder structures, the importance of the reference
architecture is discussed for adders.

Regarding adder structures, like every other arithmetic
unit, it is extremely important to precisely specify inputs
and outputs; and in order to have an equitable comparison
it should be consistent for all the architectures. For the
first time in this paper, the impact of considering Carry-out
in the calculations on the error values of the approximate
adders is studied. Taking Carry-in as a uniformly distributed
random bit does not make a considerable difference in
comparison with a fixed input carry. As a result, most
of the time, the consideration is a fixed input carry, i.e.
Ci n = 0. However, in some literature [3], [4], error values
have been reported without considering Co as part of the
adders’ outputs, without mentioning how it can affect the
error values. It will be shown in the next section that error
values for the same architectures can be two times bigger
when Co is excluded from the reference architecture.

B. Metrics

Metrics are defined based on the target applications.
However, different conclusions might be come out of dif-
ferent metric choices. Dealing with approximate adders as
well as working in the stochastic regime, the most decisive
metric to choose an adder is the error metric. Existing
research works have used various error metrics. The authors
in [13] defined the Error Distance and the Mean Error
Distance (MED) to evaluate the arithmetic performance of
approximate circuits. These metrics, based on the defini-
tions, are absolute error and Mean Absolute Error (MAE),
respectively. In [14], MED, and error rate have been chosen
to show the error characteristics of approximate adders. In
[4], to compare approximate adders as well as approximate
multiplier designs, authors made use of MED and Pass Rate
metrics. In [2], [15], [16], relative error metrics have been
used to evaluate designs. In this paper, MAE and Mean

Squared Error (MSE) are used to compare different adder
structures.

Since more accuracy cannot be gained without an
increase in the silicon area and/or power consumption,
comparing approximate adders without considering their
costs seems to be unfair. This is even more important
working in the stochastic regime. It will be shown in the
next section how cost if defined can change the superiority
of an adder over the others. In addition, depending on
which cost metric

(
either Area-Delay Product (ADP), Power-

delay Product (PDP), or Power-Delay-Area Product (PDAP)
)

is chosen, different understandings can be concluded.

C. Internal Architectures

Another important factor affecting approximate adders’
behavior in the stochastic regime is the architectures used
as their sub-adders. Although changing the exact architec-
tures used as sub-adders does not change the approximate
adders’ error values, it significantly affects the stochastic
behavior of the adders. Consequently, in order to compare
adders, the internal architectures should be specified. In
[2]–[4], the costs of the approximate adders have been
compared without indicating the architectures used inside
the adders. In the next section, by changing constraints in
the synthesis tool, which results to different netlists and
corresponds to change in internal architectures, we show
the impact of different internal architectures on stochastic
behavior of approximate adders.

D. Possible Configurations

Obviously, different approximate adders’ configurations
do not show similar behavior in the stochastic regime,
which should be taken into account. As discussed in the
previous section, approximate adders like ESA and ETAII
can be divided into equal or non-equal segments. Since the
configuration of approximate adders is a knob to improve
them, it should be mentioned which configuration has
been chosen. In the next section, the impact of different
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Fig. 5. (a)-(d) Mean absolute error,(e)-(h) Square root of mean squared error, of the adders vs. different figures of merit.

configurations on behavior of approximate adders in the
stochastic regime is shown using experimental results.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

To assess the circuit characteristics and evaluate the
claims stated in the previous section, we have generated
VHDL description of the adders. Different configurations of
these adders are synthesized in a commercial 65 nm library,
for 16-bit operands. Using back-annotated simulations,
dynamic power dissipation of the adders are evaluated
after synthesis. All the adders have been simulated for 107

uniformly distributed random input patterns. Using fre-
quency over-scaling different approximate and exact adders
have been compared. In this section, each adder’s name is
followed by one number. For ESA and ETAII, this number
is the size of the equal segments, k. Regarding LOA, the
number is the size of the lower significant sub-adder; i.e.
the number of OR gates. In the cases where more than one
number follow ETAII and ESAs’ names, they show segment
sizes from the lowest to the highest significant, from left
to right, respectively. Although in these cases the adder is
not an equal segmented adder anymore, in order to prevent
any confusion, we still call it ESA. For instance, ESA-3445 is
a 16-bit segmented adder with the lowest significant sub-
adder of size 3, and highest significant sub-adder of size
5.

As mentioned in the previous section, considering or
not considering Co in the error calculation affects the error
values of the adder. The error values of approximate adders
working with nominal frequencies are tabulated in table
I. Different configurations of the approximate adders have
been simulated and the error values are shown in the table.

The error values for the same architectures are also included
in the table for the case in which Co is not considered in
the calculations. Therefore, with Co and without Co in the
first and second row of the table indicate the calculations
with and without considering Carry-out in the outputs of
the reference adder architecture, respectively.

As can be seen in table I, the error values for ESA and
ETAII can be up to 2 times higher when Carry-out is not
considered in calculations. This number is even bigger for
LOA, i.e. nearly 2.3x higher error values.

Figure 4 shows graphically the impact of Co on the error
values of the approximate adders working in the stochastic
regime. Although at higher frequencies the effect is less
relevant, it can also be seen in the figure that without Co ,
the error values can considerably increase. As a result, when
reporting error values of the adders, it should be specified
whether Co has been considered in the calculations or not.
Nevertheless, since the normal case is considering Co as
part of the outputs of the adder, when it is not considered,
must be stated.

In order to show the impact of considering different
metrics on the comparison of the adders, we compare four
adders using frequency over-scaling. Figure 5 shows how
metrics can affect the comparison. Figures 5(a)-(d) show
mean absolute error of the adders versus their efficiencies,
while the same graphs for square root of mean squared
error (SQRMSE) of the adders are depicted in figures 5(e)-
(h). As can be seen, considering MSE, in some periods, ESA
and ETAII, due to their lower error values, show superiority.
Nevertheless, since the results of MAE and MSE do not show
a considerable difference, for the rest of this paper, MAE is
the chosen error metric to show the accuracy of the adders.



TABLE I
MEAN ABSOLUTE ERROR - IMPACT OF Co ON ERROR VALUES

ESA-4 ESA-3445 ESA-5 ESA-6 ETAII-4 ETAII-3445 ETAII-5 ETAII-6 LOA-6 LOA-8
with Co 2046.79 1022.89 1022.83 511.36 127.42 63.53 31.6 7.52 11.87 47.85

without Co 3843.47 1981.51 1980.56 1005.89 240.25 123.19 61.43 14.94 27.79 111.16

As depicted in figure 5, when error values of the over-scaled
adders are measured without considering the cost of the
adders, figure 5(a) and 5(e), there is no reason to use LOA in
the stochastic regime. While the cases in which error values
are shown versus the cost of the adders, LOA outperforms
the other approximate adders in the stochastic regime.

Indeed, depending on which figures of merit are of
interest, figures 5(b)-(d) are taken into consideration. In all,
taking the cost into account, LOA shows the best behavior
in the stochastic regime, with the current configurations. As
can be seen in graph (b), when the goal is to have optimized
area, there is no reason to use ETAII-4, and the exact adder
working stochastically has less error for every given area-
delay product. Note that, here, all the approximate adders
use serial prefix algorithm in their sub-adders. In addition
to that, conventional configurations of the approximate
adders have been chosen to show the effect of metrics in
figure 5.

As discussed in the previous section, internal archi-
tectures of arithmetic units play an important role in
their behavior in the stochastic regime. Figure 6 shows
how approximate adders can behave differently using dif-
ferent sub-adders. Indeed, here, the approximate adders
are synthesized using different timing constraints which
corresponds to different sub-adder architectures. As can be
seen in the figure, changing internal architectures of the
approximate adders does not change the error values, but
makes a change in the slopes in the stochastic regime. It
should be taken into consideration that even a different
setting of the synthesizer can affect the results. This is
a powerful motivator to have a framework for a fair and
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reproducible comparison.

Another important factor which should be specified
is the configuration of the approximate adders. Figure 7
shows the stochastic behavior of the approximate adders
for different configurations. As can be seen in the figure,
in the nominal frequency, ETAII-5 and ETAII-6 have lower
error values than LOA-8. As a result, it cannot be claimed
that with absolute certainty LOA outperforms ETAII, or vice-
versa, and the configuration has a significant effect. As de-
picted in figure 7, ETAII-5 and ETAII-6 outperform LOA-8 as
long as working with nominal frequencies or less. However,
working stochastically in an over-scaled frequency, LOA-8
outperforms ETAIIs.

Considering all the aforementioned factors, we compare
approximate and exact adders in the stochastic regime.
Figure 8 shows the comparison of the approximate and
exact adders in the stochastic regime. The best gate-level
netlist, for each adder, has been generated by the synthe-
sizer applying the same constraints for all the adders. As
can be seen in the figure, the exact adder is the superior
design to the point that makes no errors. Whereas in the
stochastic regime, as soon as the exact adder starts making
errors, LOA outperforms all the other adders. As depicted
in figure 8(a), where the error values are shown versus PDP,
for higher frequencies, ESA outperforms the other adders.
However, the error values are big enough to claim that it
does not makes sense to make use of ESA stochastically.

Due to the fact that LOA is of a different category of
approximate adders, some researchers exclude it from their
comparison. In this case, if we do not consider LOA, based
on the graphs depicted in figure 5, there is no reason to

0 20 40 60 80 100 120

5

10

15

ADP [ f m2S]

lo
g 2

(M
A

E
)

LOA-6

LOA-8

ESA-4

ESA-5

ESA-6

ESA-3445

ETAII-4

ETAII-5

ETAII-6

ETAII-3445

Fig. 7. A comparison of approximate adders with various configurations



0 10 20 30 40 50

5

10

15

PDP [ f J ]

lo
g 2

(M
A

E
)

(a)

0 20 40 60

5

10

15

ADP [ f m2S]

lo
g 2

(M
A

E
)

(b)
LOA-8

ESA-4

ETAII-4

Exact adder

Fig. 8. Comparison of optimized adder structures in the stochastic regime; (a) MAE vs. PDP , (b) MAE vs. ADP

use approximate adders. Seeing that, for any given error
value, an exact adder can be found working stochastically
outperform both ETAII and ESA architectures. Nonetheless,
as depicted in figure 8, if the right configuration and sub-
adder architectures be chosen for ETAII and ESA, they
outperform the exact adder in the stochastic regime. As can
be seen in figure 8, since efficient architectures are used as
sub-adders, in a big range, ETAII-4 working stochastically
outperforms the efficient exact adder.

V. CONCLUSION

In this paper, the error behavior of approximate and
exact adders in the stochastic regime has been evaluated.
A fair and reproducible comparison of the adders has
been provided considering the cost of the adders. Using
experimental results, the impact of different reference archi-
tectures, metrics, internal architectures, and configurations
have been evaluated. It is concluded that, once the exact
adder starts making errors, LOA outperforms all the other
architectures. Putting LOA aside, there is no reason to use
approximate adders, while exact adders working stochasti-
cally perform better than approximate adders taking cost
and accuracy into consideration. However, if the configura-
tion and the sub-adder architectures of approximate adders
are chosen appropriately, they can outperform exact adders
in the stochastic regime.
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